ERRATUM
Cross-stream migration of non-spherical particles in a second-order fluid – theories of particle dynamics in arbitrary quadratic flows

Cheng-Wei Tai1, Shiyan Wang1 and Vivek Narsimhan1\dagger

1Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

(Received xx; revised xx; accepted xx)

Our recent paper (Tai \textit{et al.} 2020) discussed the polymeric force/torque acting on a non-spherical particle in a second order fluid (co-rotational limit). It contains two sets of typos. We will correct these shortcomings below.

- Equation (2.27) in Tai \textit{et al.} (2020) should read

$$\frac{2\mu}{\psi_1} T_i^p = -\frac{\partial T_i^N}{\partial t} + \varepsilon_{ijk}(u_j^c - U_j)F_k^{(1)} + 2\varepsilon_{ijk}E_{jm}S_{mk} - \varepsilon_{ijk}T_j^N\Omega_k + \frac{3}{2}\varepsilon_{ijk}\Gamma_{j\rho q}^{(3)'} F_{k\rho q}^{(3)'}$$

$$+ \frac{1}{5}\varepsilon_{ijk}\tau_j H_k - \frac{1}{10}\varepsilon_{ijk}\tau_j B_k + \frac{1}{6}\varepsilon_{ijk}\Omega_{jm}\Theta_{mk},$$

(2.27)

where the second term on the right hand side is now $\varepsilon_{ijk}(u_j^c - U_j)F_k^{(1)}$ instead of $\varepsilon_{ijk}u_j^c F_k^{(1)}$ in the original manuscript. Similarly, equation (3.2) should be corrected to (Brunn 1977):

$$T_p^i = -\frac{\psi_1}{2\mu} \left(\frac{\partial T_i^N}{\partial t} + \varepsilon_{ijk}F_j^{(1)}(u_k^c - U_k) + \varepsilon_{ijk}T_j^N\Omega_k + 2\varepsilon_{ijk}E_{km}S_{mj} \right).$$

(3.2)

where the second term in the parentheses is now $\varepsilon_{ijk}F_j^{(1)}(u_k^c - U_k)$ instead of $\varepsilon_{ijk}F_j^{(1)}u_k^c$ as stated before. Equation (3.4) should be corrected to:

$$T_i^{tot} = 8\pi \mu R^3 (\Omega_i - \omega_i) - \frac{\psi_1}{2\mu} \varepsilon_{ijk} \left[6\pi \mu R (u_j^c - U_j)(u_k^c - U_k) \right]$$

$$- \frac{\psi_1}{2\mu} \varepsilon_{ijk} \left[8\pi \mu R^3 (\Omega_j - \omega_j)\Omega_k \right] + \frac{\psi_1}{\mu} \varepsilon_{ijk}E_{jm}S_{mk} - 4\pi R^3 \psi_1 \frac{\partial}{\partial t}(\Omega_i - \omega_i).$$

(3.4)

For those interested, the origin of the above corrections come from the time derivatives in the polymeric torque integral in equation (2.18). The first term on the right hand side

\dagger Email address for correspondence: vnarsim@purdue.edu
of the equation (2.18) can be written as:

\[
2 \psi_1 F^p_i = \int_{S_\infty} \varepsilon_{ijk} x_j \left(\frac{1}{\mu} \frac{\partial P^N}{\partial t} \delta_{kp} - \frac{\partial \gamma_{kp}}{\partial t} \right) n^\infty_p dS \\
+ \int_{S_\infty} \frac{1}{\mu} \frac{\partial u_m}{\partial x_j} \left(P^N \delta_{ij} - \mu \gamma_{ij} \right) n^\infty_m dS \\
+ \int_{S_\infty} \left(\frac{1}{4} \gamma_{km} \gamma_{mk} \delta_{ij} - \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} + \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k} \right) n^\infty_j dS,
\]

(2.17)

\[
2 \psi_1 T^p_i = \int_{S_\infty} \varepsilon_{ijk} x_j \left(\frac{1}{\mu} \frac{\partial P^N}{\partial t} \delta_{kp} - \frac{\partial \gamma_{kp}}{\partial t} \right) n^\infty_p dS \\
+ \int_{S_\infty} \varepsilon_{ijk} x_j \frac{\partial u_m}{\partial x_p} \left(\frac{1}{\mu} P^N \delta_{kp} - \gamma_{kp} \right) n^\infty_m dS \\
- \int_{S_\infty} \varepsilon_{imk} \left(\frac{1}{\mu} P^N \delta_{kp} - \gamma_{kp} \right) u_m n^\infty_p dS \\
+ \int_{S_\infty} \varepsilon_{ijk} x_j \left(\frac{1}{4} \gamma_{mn} \gamma_{mn} \delta_{kp} - \frac{\partial u_m}{\partial x_k} \frac{\partial u_m}{\partial x_p} + \frac{\partial u_k}{\partial x_m} \frac{\partial u_p}{\partial x_m} \right) n^\infty_p dS.
\]

(2.18)

The corrections will modify one plot in the manuscript, which is figure 3(c) in section 3.2.2. The nondimensionalized polymeric torque is now on the order of \(O(10^{-3})\), which is within the error of the BEM simulation. All other results in the paper are unaffected, since the corrected term is proportional to the Newtonian force \(F^{(1)}_i\), and all the other scenarios examined have \(F^{(1)}_i = 0\) to leading order.

- We noticed two typographical errors in equations (2.17) and (2.18), where a plus sign is missing between the first and second integral. The equations should be corrected to:

\[
2 \psi_1 F^p_i = \int_{S_\infty} \varepsilon_{ijk} x_j \left(\frac{1}{\mu} \frac{\partial P^N}{\partial t} \delta_{kp} - \frac{\partial \gamma_{kp}}{\partial t} \right) n^\infty_p dS \\
+ \int_{S_\infty} \frac{1}{\mu} \frac{\partial u_m}{\partial x_j} \left(P^N \delta_{ij} - \mu \gamma_{ij} \right) n^\infty_m dS \\
- \int_{S_\infty} \varepsilon_{imk} \left(\frac{1}{\mu} P^N \delta_{kp} - \gamma_{kp} \right) u_m n^\infty_p dS \\
+ \int_{S_\infty} \varepsilon_{ijk} x_j \left(\frac{1}{4} \gamma_{mn} \gamma_{mn} \delta_{kp} - \frac{\partial u_m}{\partial x_k} \frac{\partial u_m}{\partial x_p} + \frac{\partial u_k}{\partial x_m} \frac{\partial u_p}{\partial x_m} \right) n^\infty_p dS.
\]

(2.18)

REFERENCES

FIGURE 3. (c) Non-dimensionalized polymeric torque in the z-direction for different values of y_0. The parameters are $L = 10$, $R = 1$, $Wi = 0.1$. Wi is the Weissenberg number, defined by $Wi = \psi_1 u^m / L\mu$.

$2\mu u^m \frac{\partial \psi_1}{\partial y_0}$